
A nonlinear reduced order modelling approach
to solid mechanics with application
to representative volume elements

Abstract: why nonlinear MOR for FE2 RVE computations?

Nonlinear model order reduction (MOR) methods like Laplacian Eigenmaps (LEM) [1] and Locally

Linear Embedding (LLE) [8] are often used to extract nonlinear trends in image and speech process-

ing [3]. There has also been successful application in fluid mechanics [7] and elastodynamics [5].

Here, we investigate the application of nonlinear MOR methods to representative volume element

(RVE) computations in the context of the FE2 method for solid mechanics.

Idea: Use LEM and LLE to capture nonlinearities in solution manifolds of mechanical systems,

to obtain more accurate results with fewer parameters and lower computational effort [3].

Application: Representative volume element (RVE) computations for the FE2 method [10, 4, 9].

Challenges:
Mapping between solution space and reduced

space not defined a priori [7],

Linearisation nontrivial [7].

Opportunities:
Lots of data,

Well-defined parameter space,

Nonlinear, low-dimensional solution manifold.

Goal: accelerate FE2 RVE computations

Instead of querying a mate-

rial law, the FE2 method per-

forms an RVE computation

at each Gauss point, in each

iteration [10, 4, 9].

1. Pass macroscopic

deformation gradient F̄ to
RVE.

2. Impose e.g. periodic

boundary conditions and

compute displacements

u ∈ RD in RVE; compute
stress P and stiffness A
fields.

3. Return average stresses P̄
and stiffnesses Ā to

macroscopic simulation.

F̄

P̄, Ā

Figure 1. Schematic of the FE2 method

Approach: Use (nonlinear) MOR to accelerate RVE computations. Do this by reducing the RVE

displacement field u ∈ RD using LEM or LLE. The MOR scheme could be divided as follows:

1. Offline phase: Gather snapshots (full-FEM solutions) U ∈ RD×s to the RVE problem to use
as training data, and use LEM or LLE to obtain an embedding Y ∈ Rd×s.

2. Online phase: Use the reduced model and local linearisation for projection-based MOR.

Proof of concept: numerical experiments on an RVE

In a proof-of-concept investigation, the LEM and the LLE are used to obtain reduced models for an

artificial RVE. The RVE is subjected to periodic boundary conditions with load paths specified via

the macroscopic displacement gradient H̄ = F̄ − I to emulate the use case in the FE2 method.

Figure 2. Three macroscopic displacement gradient

components for training (red) and validation (blue)

load paths

1. Compute RVE snapshots (full-FEM solutions)

U ∈ RD×s for 10 training load paths (red dots).

2. Obtain embedding Y ∈ Rd×s via LEM or LLE.
3. Compute RVE solutions for 50 validation load

paths (blue dots), using the reduced model.

4. Compare to results obtained via full-FEM

computations. Evaluate the relative error between

reduced and full-FEM solutions.

5. Compare relative errors obtained via the LEM and

LLE to those obtained via the Proper Orthogonal

Decomposition (POD), see e.g. [6, 11].

Experiments are conducted on the simple artificial RVE with two pores in Figure 1, with:

D ≈ 6000 as well as D ≈ 20000 DOFs,
Quadratic tetrahedral elements,

Compressible neo-Hooke material model [2],

E = 1000, ν = 0.25.

Results: relative error for RVE experiments
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How to unwind a solution manifold with nonlinear MORmethods

For a set of full-FEM snapshot solutions U ∈ RD×s to an RVE problem, the LEM and LLE can find

a low-dimensional embedding Y ∈ Rd×s. The goal is the data-based identification of a reduced
space y ∈ Rd to parametrise the solution manifold while respecting its nonlinearity. For example,
an LEM workflow might look as follows [1]:

1. Compute s full-FEM snapshots solutions U ∈ RD×s for the RVE problem.

2. Make a graph G with Gaussian weights W ∈ Rs×s forU using a k-nearest neigbours algorithm.

3. Compute the graph Laplacian L = D − W, were D is a diagonal matrix with Dii =
∑
jWij.

4. Compute the eigenvalues λi and eigenvectors vi of the scaled graph Laplacian L̃ = D−1L.
5. The eigenvectors for the 2nd to s + 1th lowest eigenvalues yield the embedding:

Y = [v2, ...,vs+1]T ∈ Rd×s.

A: Solution manifold to

be approximated

(in solution space

u ∈ RD)

B: Compute snapshots

(full FE solutions to

RVE problem)

C:Make graph of

snapshot data

D: Nonlinearly embed

graph using LEM or LLE

(in reduced space

y ∈ Rd)

Challenge: Mapping u = M(y) from reduced space y ∈ Rd to solution space u ∈ RD not known!

How to (locally) linearise nonlinear MORmethods

1: Find neighbours (red) to current point (blue)

in reduced space

2: Linearise mapping of neighbouring points

from reduced to solution space

Solution: Local linearisation of mapping from reduced space y ∈ Rd to solution space u ∈ RD
via coordinates of N neighbouring solutions in reduced space YN ∈ Rd×N and solution space
UN ∈ RD×N

ψ = UNWNYT
N (YNWNYT

N )−1, WN = IN − 1
N

1N ,

such that the increment in solution space can be computed as

∆u = ψ∆y.

An alternative is the global linearisation scheme proposed in [7], with ψ = UYT (YYT )−1.

How to use LEM and LLE for nonlinear projection-based MOR

When Newton’s method is used to solve an RVE problem, in each iteration, the stiffness matrix

K ∈ RD×D and residuum g ∈ RD must be assembled and the linear equation system
K∆u = −g,

solved for the unknown displacement increment ∆u ∈ RD [10, 4, 9].

With LEM or LLE and local linearisation, the search for solutions can instead be projected onto

the approximated tangent to the solution manifold via

ψTKψ︸ ︷︷ ︸
Kr

∆y = −ψTg︸︷︷︸
gr

.

Here, ∆y ∈ Rd is the increment in the reduced variables which aim to parametrise the solution
manifold, and Kr ∈ Rd×d and gr ∈ Rd are the reduced stiffness matrix and residuum.
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